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ABSTRACT

The microstructure of the fine aggregate matrix has a significant influence on the mechanical prop-
erties and evolution of damage in an asphalt mixture. However, very little work has been done to
define and quantitatively characterize the microstructure of the asphalt mastic within the asphalt
mixture. The main objective of this study was to quantitatively characterize the three dimensional
microstructure of the asphalt binder within the fine aggregate matrix of an asphalt mixture and
compare the influence of binder content, coarse aggregate gradation, and fine aggregate gradation
on this microstructure. Results indicate that gradation of the fine aggregate has the most influence
of the degree of anisotropy whereas gradation of the coarse aggregate has the most influence on
the direction anisotropy of the asphalt mastic within the fine aggregate matrix. Addition of asphalt
binder or adjustments to the fine aggregate gradation also resulted in a more uniform distribution
of the asphalt mastic within the fine aggregate matrix.
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EXECUTIVE SUMMARY

Evidence in the literature suggests that the microstructure of the fine aggregate matrix has a sig-
nificant influence on the mechanical properties and evolution of damage in an asphalt mixture.
However, very little work has been done to define and quantitatively characterize the microstruc-
ture of asphalt mixtures. The first objective of this study was to identify quantitative metrics to
characterize the microstructure of the fine aggreagte matrix within a full asphalt mixture. The sec-
ond objective of this study was to use these metrics to compare the changes in the microstructure
as a result of changes in binder content, gradation of coarse aggregates, and gradation of fine ag-
gregates.
Based on a review of the literature, the star length distribution was identified as a means of defining
the three dimensional geometry of the asphalt mastic that holds the fine aggregates together. X-ray
computed tomography was used to obtain three dimensional images a selected volume from the
full asphalt mixture. Two replicates of four different kinds of asphalt mixtures were used in this
study. The star length distribution was used to compute the fabric tensor and determine the degree
of anisotropy, orientation of the preferred direction of the asphalt mastic, average dimensions of
the three dimensional asphalt mastic, and the variability of these dimensions.
Results indicate that gradation of the fine aggregate has the most influence of the degree of anisotropy
whereas gradation of the coarse aggregate has the most influence on the direction anisotropy of the
asphalt mastic. Addition of asphalt binder or adjustments to the fine aggregate gradation also re-
sulted in a more uniform distribution of the asphalt mastic within the fine aggregate matrix. This
could have a significant influence on mixture design and performance. For example, a matrix
where the asphalt mastic has smaller average dimensions and is more uniformly dispersed can be
more effective in crack pinning and hence resisting crack growth.
Another finding from this study is that, although all test specimens had gradations within the spec-
ification limits, they had widely different internal microstructures. The differences in the internal
microstructure are expected to yield very different mechanical and damage characteristics. While
the findings reported in this study are based on the use of a limited number of mixtures, the results
highlight the importance of understanding the relationship between aggregate gradation, internal
microstructure, and performance.
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CHAPTER 1. INTRODUCTION

1.1 PROJECT BACKGROUND

Fatigue cracking is a significant form of pavement distress in flexible pavements. The most com-
mon method to quantify the resistance of asphalt mixtures to fatigue cracking and other distress
mechanisms is to perform mechanical tests under controlled laboratory conditions on mixture spec-
imens. The advantage of this approach is that candidate mixtures can be ranked based on their
performance using a simple laboratory test. Another advantage of this approach is that it takes into
account the combined affect of material and mixture properties on mixture performance. However,
there are three major limitations to this approach. First, it does not provide any information that
can be used to explain why certain mixtures perform better than others. This in turn limits the
ability of the engineer to take cost effective remedial actions to improve the performance of poor
performing mixtures. Second, the evolution of damage from some of the traditional laboratory
performance tests is dependent on the test conditions (e.g. specimen geometry or mode of loading)
and cannot be extrapolated to field conditions. Finally, the results obtained by conducting tests
on full asphalt mixtures often have a very high variability. To alleviate some of these shortcom-
ings, several research studies have been undertaken to investigate the properties and performance
of asphalt mixtures at multiple length scales. For example, constituent materials (e.g. binder, ag-
gregate, and fines) are evaluated in order to identify their contribution to mixture properties and
damage evolution. Properties of mastics (fines mixed with asphalt binder) are evaluated to under-
stand filler-binder interactions. Evaluation of sand-asphalt mortars or FAM provides information
on the evolution of cracks, role of fines to arrest crack growth, and mechanisms of moisture dam-
age. Evaluation of full asphalt mixtures helps identify the role of coarse aggregate properties and
mixture microstructure in resistance of the mixture to damage.

There is significant evidence in the literature that demonstrates that the microstructure of the
sand-asphalt dictates the mechanical properties and evolution of damage within the full asphalt
mixture. However, in the context of asphalt mixtures the term microstructure is not well defined.
There have been very few attempts to derive a quantitative metric for the microstructure of asphalt
mixtures. Developing a quantitative method to describe the three dimensional microstructure of
asphalt mixtures has several potential applications and advantages. For example, a quantitative
measure of the microstructure of asphalt mixtures can be used to (i) characterize the average three
dimensional geometry of the matrix that holds the aggregates together (where matrix may refer to
the binder, mastic, or mortar depending on the length scale of interest), (ii) estimate the level of
anisotropy of different components within the asphalt mixtures, (iii) understand the relationship
between geometry of the matrix and performance related aspects such as development of confining
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stresses, and (iv) estimate the influence of aggregate shape, gradation, and binder content on the
shape of the matrix.

1.2 OBJECTIVES OF THIS STUDY

The main objective of this study is to address the first and most critical step in the pursuit of relating
mixture microstructure to its properties, i.e. to establish a quantitative method to characterize the
three dimensional microstructure of the asphalt binder and filler matrix or mastic in an asphalt
mixture. This was achieved by accomplishing the following key steps.

• Asphalt mixture specimens with different aggregate gradations and binder contents were
fabricated in the laboratory.

• Representative volumes of these asphalt specimens where then scanned using very high res-
olution three-dimensional X-ray computed tomography (X-Ray CT). Note that unlike previ-
ous studies, the focus of this study was to evaluate the three dimensional microstructure of
asphalt binder or mastic in a mixture. Consequently, smaller representative portions of the
full asphalt mixture specimen were scanned using very high resolution X-ray CT instead of
lower resolution scans of full asphalt mixture specimens.

• The scanned gray scale X-ray CT images were processed to eliminate noise and determine
the gray scale thresholds that separate the three phases, asphalt binder, aggregate and air
voids based on measured volumetric properties.

• The star length distribution (SLD) parameter was used to characterize the shape of the asphalt
binder matrix in the mixture. Change in aggregate gradation and binder content was used to
describe the change in microstructure of the asphalt mixtures via the SLD parameter.

• Parameters based on the SLD such as the fabric tensor were used to estimate the level of
anisotropy in the mixture. Variability in the SLD was used to quantify the expected variabil-
ity in the mixture properties along specific directions.

1.3 REPORT STRUCTURE

This report consists of five chapters. The first chapter in on the project background and objectives
of this study. The second chapter summarizes the findings from a detailed literature review on
three aspects, (i) importance of internal microstructure on the performance of asphalt mixtures and
methods used to determine the internal microstructure, (ii) methods to pre-process and enhance
images, and (iii) metrics to quantify internal microstructure of composite materials and relationship
of these metrics to mechanical properties of the composite. The third chapter presents details of
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the methodology used to fabricate specimens, collect and process the image data. Chapter four
presents the detailed analysis of results and chapter five presents a discussion of findings and
conclusions from this study.
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.1 INTERNAL STRUCTURE OF ASPHALT MIXTURES AND OTHER COMPOSITES

The term internal structure of an asphalt concrete mixture refers to the content and spatial distribu-
tion of asphalt, aggregates and air-voids (Masad et al., 1999a). The internal structure of the mixture
is dictated by the proportions and properties of its constituent materials and method of compaction.
It is well recognized that the internal structure of an asphalt mixture plays a significant role in in-
fluencing the mechanical properties and the resistance of the mixture to major distresses including
rutting, fatigue cracking, thermal cracking and low temperature cracking. Most mixture design
methods recognize the importance of internal microstructure by imposing requirements for ag-
gregate size, gradation, shape, limits on density during compaction, and volumetrics (Masad and
Button, 2004). In the past decade several research studies have used more direct methods, such
as imaging techniques, to characterize the internal microstructure of asphalt mixtures. Three basic
steps are typically required the characterize the internal microstructure using this direct approach.
The first step is to acquire two-dimensional (2D) or three-dimensional images (3D) of the compos-
ite. Digital cameras can be used to acquire 2D image of a cross-section or a series of images for
cross-sections that are obtained by physically dissecting the specimen into several slices. An alter-
native approach is to use non-destructive techniques such as 3D X-ray tomography that provide a
stack of 2D images for a volume of interest at varying resolutions. The second step is to process
the image to eliminate noise and identify regions of interest (e.g. aggregate, air void). Section 2.2
presents more details on image processing. The last step is to identify metrics that can be used to
quantify the characteristic of interest (e.g. size of voids, orientation of aggregates). Section 2.3
presents more details on image analysis.

Image analysis of internal microstructure has been applied in three broad areas discussed below.
First, image analysis has been used to investigate the influence of compaction on the internal
microstructure of asphalt mixtures. For example, Masad et al. (1999a) used X-ray tomography to
establish the relationship of aggregate orientation, aggregate gradation, and air void distribution
to the compaction effort. The study included specimens compacted in the laboratory using the
Superpave gyratory compactor (SGC) with different number of gyrations as well as field cores. The
orientation of an aggregate was measured as the angle between its major axis and a horizontal line
on the scanned image. Anisotropy in aggregate orientation was quantified based on the distribution
of the aggregate orientations. Aggregate and air void size distributions were obtained by measuring
the area on the two-dimensional sectional images obtained from X-ray tomography. The bias due
to the use of two-dimensional sectional images to obtain aggregate size distribution was corrected
using Monte-Carlo simulations. Due to limitations in the resolution of images obtained from the
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X-ray tomography, comparison of aggregate size distribution and orientation to the compaction
effort was limited to coarse aggregates. Masad et al. (1999a) concluded that specimens compacted
using a low number of gyrations resulted in a uniform void distribution throughout the specimen
height. On the other hand, at higher number of gyrations the middle part of the specimen had fewer
air voids. In another study, Masad et al. (1999b) quantified the internal structure of the asphalt
mixtures in terms of the aggregate orientation, points of contact and distribution of air voids. These
characteristics were compared for mixtures compacted using the SGC and the linear kneading
compactor (LKC). The erosion operation technique was used to determine the number of contact
points. Masad et al. (1999b) concluded that the aggregates in the SGC have preferred orientation
toward horizontal direction while aggregates in the LKC had a more random distribution. They
also concluded that the aggregates in LKC specimens had more point to point contacts as compared
to the SGC specimens. They suggested that higher aggregate contact points in the LKC specimens
resulted in higher shear strength in specimens compacted using the LKC due to inter particle
contact. Finally, they concluded that air voids were concentrated at the top and the bottom portions
of the SGC compacted specimens and at the bottom of the LKC specimens. Hunter et al. (2004)
also investigated the change in internal microstructure of asphalt mixtures as influenced by the
method of compaction. Radial and circumferential particle alignment and area of particles in fixed
radial quadrants were used to examine variations in aggregate orientation and distribution within
the asphalt mixture. They concluded that depending on the method of compaction, mixtures with
similar bulk volumetric properties demonstrated different levels of preferred circumferential and
radial orientations.

Second, image analysis has been used to investigate the influence of internal microstructure on
the engineering properties and performance of asphalt mixtures. For example, Yue et al. (1995)
used image analysis to quantify anisotropy in an asphalt mixture based on the orientation of ag-
gregates. Directional distribution of aggregates was quantified based on the ratio of average area
per aggregate in horizontal sections to the average area per aggregate in vertical sections. Wang
et al. (2001) demonstrated that field cores with similar volumetric properties exhibited different
internal microstructure that correlated better with their observed field performance. Void content,
void distribution, and mean solid path were measured on sectional images obtained using X-ray
tomography. An interpolation algorithm was developed and used to create intermediate sectional
images in order to compensate for the lower vertical resolution as compared to the horizontal reso-
lution for the images. Masad et al. (2002) and Tashman et al. (2005) used two dimensional image
analysis to quantify aggregate distribution on cut sections of asphalt mixtures to determine the level
of anisotropy. They then used this as one of the model parameters to improve the predictions of
viscoplastic deformation in asphalt concrete mixtures. Arambula et al. (2007) demonstrate that the
aggregate gradation and compaction effort influence the size and distribution of air voids within an
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asphalt mixture. The size and distribution of air voids were shown to have a strong influence on
the rate of moisture damage in the asphalt mixtures.

The relationship of internal microstructure and mechanical properties has also been long rec-
ognized for materials other than asphalt mixtures. For example, according to Ryan and Ketcham
(2002) the relationship between the trabecular bone morphology and skeletal loads was first in-
vestigated in 1867. Cowin (1985) investigated the relationship between the stiffness tensor of a
trabecular bone to its “fabric”. He introduced the term fabric as a measure of the local anisotropy
of a material’s microstructure. Duxson et al. (2005) demonstrated a correlation between mechani-
cal strength and Young’s modulus of geopolymers and their microstructure .

Finally, image analysis has been used to derive the internal microstructure of asphalt mixtures
that serves as the required geometry input for computational modeling. For example, Wang et al.
(2007) describe methods to extract three dimensional geometric features of aggregates from X-ray
CT images. Zhanping et al. (2009) developed a two dimensional and three dimensional discrete el-
ement model to predict the dynamic modulus of asphalt concrete mixtures. The required geometry
for these models was obtained using X-ray CT imaging. The authors reduced the three dimensional
images of real asphalt mixtures into three different components, coarse aggregates, fine aggregate-
binder mortar, and air voids. Zelelew et al. (2008) developed volumetric based global minima
thresholding algorithm to process asphalt concrete X-ray CT images. This technique was used to
distinguish between air, mortar and coarse aggregates within a full asphalt mixture based on the
volumetric properties of the mixture thus allowing for a more accurate and calibrated geometric
representation of these components that can be used in subsequent computational modeling. Tu-
tumluer et al. (2008) used imaging methods to extract the geometry of aggregates used in granular
materials for discrete element modeling (DEM). They used DEM to demonstrate the influence of
aggregate angularity and surface texture on the shear properties of granular base materials.

The previous studies have recognized the importance of the distribution or structure of the inter-
nal structure of asphalt mixtures. However, most of this work focused on the characterization of
aggregate size, distribution and orientation of the distribution of air voids. Very little work has been
done to quantitatively characterize the microstructure of the matrix, i.e. asphalt binder or mastic
that holds the mixture together. In 1930s Hveem introduced the concept of film thickness to design
asphalt mixtures. The methods used to calculate the film thickness (that would result in optimal
performance of the mixture) were approximate and relied on several unrealistic assumptions. More
recently, Elseifi et al. (2008) used reflective light microscopy and scanning electron microscopy
to demonstrate that a uniform film coating the aggregates did not actually exist in the asphalt mix.
They demonstrated that film thickness varied greatly within the same specimen and around the
same aggregate. They also reported that mineral fillers and finer aggregates were embedded in the
asphalt binder such that the behavior of the binder itself may not be as critical as the behavior of
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the mastic. The focus of this study is placed on identifying quantitative metrics to characterize the
microstructure of the asphalt or mastic matrix in the composite.

In summary, distribution of air voids, solid path between air voids, orientation and points of
contacts between coarse aggregates were typically used as the metrics to describe the internal
microstructure of asphalt mixtures. In most cases, these metrics were obtained using individual
2D sectional images of a mixture specimen and do not directly characterize the binder matrix. The
objective of this research was to identify a method and concomitant parameter by which to quantify
the three dimensional internal microstructure of asphalt binder or mastic based on the collective
analysis of all sectional planes for a mixture specimen obtained using x-ray tomography. Although
the methodology discussed in this report is applied to characterize the internal microstructure of
the asphalt mastic, it can also be used to characterize the three-dimensional microstructure of any
component in the mixture (e.g. air voids, aggregates, mortar).

2.2 IMAGE PROCESSING

Digital images acquired from X-ray CT scanning or any other method are typically in gray scale
and contain some amount of noise. The acquired images must be processed prior to use for any
kind of analysis. This section presents a short review of some of the methods that were investigated
and used to process the images used in this study. Image processing can be broken down into three
major steps:

1. Contrast enhancement

2. Noise reduction

3. Thresholding

Each one of these key steps are briefly discussed in the subsections below.

2.2.1 Contrast Enhancement

Although contrast enhancement is not critical for computational analysis of images, it is usually
performed to improve visibility of image and allows the user to clearly differentiate the components
in an image. There are two techniques available to perform contrast enhancement,

• histogram equalization and

• best fit equalization.

Histogram equalization is the most common technique used for contrast enhancement. Histogram
equalization is achieved by transforming a small range of values from an intensity image (or the
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values in the color map of an indexed image), so that the histogram of the output image approx-
imately matches a specified histogram with a broader range of values. For example, Figure 2.1
shows application of histogram equalization technique on an image of an asphalt concrete mixture.
The original image in Figure 2.1 has intensity values ranging from 0-165, while the image after
histogram equalization spans full range of available intensity values, i.e. 0-256. The best fit equal-
ization method maps the intensity values from the original gray scale image to new values such
that 1% (can be varied) of data is saturated at low and high intensities of the original image. This
increases the contrast of the output image. Figure 2.2 illustrates the typical results from using the
best fit equalization on an image of an asphalt concrete mixture.

Figure 2.1. Contrast Enhancement Using Histogram Equalization.

(Left: Before Enhancement, Right: After Enhancement)

2.2.2 Noise Reduction

This is perhaps the most important step in image processing. Noise is defined as random, usually
unwanted, variation in brightness or color information of an image. This randomness leads to erro-
neous interpretation of image data and hence needs to be addressed before any analysis is carried
out. In the case of X-ray CT images, the most common source of noise is counting statistics in the
image detector due to a small number of incident particles such as electron or photon (Russ, 2007).
Other common sources include inadequate or non-uniform illumination, undesirable viewpoint,
issues with alignment, sensor quality, as well as image digitizing and pre-processing.
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Figure 2.2. Contrast Enhancement Using Best Fit Equalization.

(Left: Before Enhancement, Right: After Enhancement)

In general, the common types of noise associated with images are random (or Gaussian) noise,
shot (or salt pepper) noise, film grain, and non-isotropic noise. Random noise is the most common
form of noise in images of asphalt concrete mixtures obtained using X-ray CT images. Images
from X-ray CT scanning can also have artifacts due to beam hardening, a process by which X-rays
with lower intensity are attenuated while rays with higher intensity continue to traverse through
the medium.

There are three common methods that can be used to reduce random noise. There are several
different sub-methods under for each one of these three methods:

• neighborhood averaging,

• median neighborhood ranking, and

• mode neighborhood ranking.

The underlying assumption to apply these methods is that pixels in the image are much smaller
than any of the important details. Another assumption is that the structure represented by a pixel
and its neighborhood is very similar. The basic principle for the three methods is the same, i.e. for
a given pixel, its original intensity value is replaced by a new value obtained by performing a math-
ematical operation on the intensity values of the neighboring pixels. In case of the neighborhood
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averaging method, the intensity of a pixel is replaced by the mean intensity of the pixels within a
defined neighborhood of the subject pixel. Similarly, in the case of median or mode ranking meth-
ods, the pixel intensity is replaced by the median or mode of intensity of pixels within a defined
neighborhood of the subject pixel. An important variable in applying these techniques is the size
of the neighborhood that is used to compute the intensity of a pixel based on its mean, median or
mode.

As stated above, neighborhood averaging replaces the original value of a pixel with the average
of pixel values around its neighborhood. The advantage of this technique is that it is very effective
in reducing shot noise. However, one limitation of this method is that it blurs the edges of dif-
ferent entities within the image. This in turn reduces the accuracy of edge detection that may be
performed on the images later. Neighborhood averaging also results in boundary displacement and
contrast reduction. Other variations of neighborhood averaging such as weighted average filter,
and Olympic filter may be used to offset these limitations to some extent. Figure 2.3 presents an
original and filtered image by performing neighborhood averaging using a 3x3 matrix and a 9x9
matrix. Notice that the use of a larger matrix size (averaging across a larger neighborhood) results
in reduced noise but greater distortion in the image.

Figure 2.3. Use of Neighborhood Averaging to Reduce Noise.

(Left: Before Filtering, Middle: Neighborhood Averaging with 3x3 Matrix, Right: Neighborhood
Averaging with 9x9 Matrix)

In the median neighborhood ranking method, the pixel value is replaced by median of neigh-
borhood pixel values. This involves ranking of pixel intensity values within a neighborhood and
assigning the median value to the central pixel. This technique overcomes most of the limitations
of neighborhood averaging, especially related to blurring of edges. Also, as the name suggests,
median neighborhood ranking is not as sensitive to outliers or extreme data points in the neighbor-
hood as compared to the neighborhood averaging. It is useful in reducing shot noise and it does not
result in shifting of boundaries or reduced brightness difference across steps. The main limitation
of this technique is that it erases fine lines and rounds corners. However, if the objective of image
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analysis is to detect features and separate different entities within the image, as in the case of anal-
ysis of the internal structure of asphalt mixtures, the median neighborhood ranking method would
be preferred to the neighborhood averaging method. Figure 2.4 presents an original and filtered
image by performing median neighborhood ranking.

Figure 2.4. Use of Median Neighborhood Ranking with 3x3 Matrix to Reduce Noise.

(Left: Before Filtering, Right: Median Neighborhood Ranking)

The mode neighborhood ranking filter replaces the value of each pixel with the mode of the pixel
values in its neighborhood. Although this filter has many advantages over the previous two filters,
a serious limitation is that it can be used with a small neighborhood. Therefore, this technique was
not considered appropriate for this study.

2.2.3 Thresholding

An asphalt mixture is made up of three components, air, asphalt binder (or mastic = binder +
fines), and aggregates. Each of these components has a significantly different density from the
other. In order to characterize the internal structure of the asphalt mixture it is of interest to clearly
differentiate these three components in the image. X-ray CT images of asphalt mixture specimens
are created by measuring the attenuation of the X-rays traveling through the specimen. The amount
of attenuation is proportional to the density of the material. Consequently, a high intensity or bright
pixel indicates a high density material (such as an aggregate) and a dark pixel indicates a low
density material or phase (such as air void). However, due to inherent variability in the densities of
these materials and finite resolution of the imaging process, the X-ray CT images do not contain
three pixel intensity values corresponding to each of the three components. Instead, the CT images
are gray scale images with pixel values ranging from 0 to 255. Thresholding is the most critical
step that allows the user to reduce these gray scale images to binary or trinary images with just
two or three pixel values to represent any two or three components of interest. The following is a
brief review and background of approaches for thresholding a gray scale image to a binary image
that clearly distinguishes between the two components of a composite using two different pixel
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intensity values. The same concepts can be extend to obtain a trinary image that uses three pixel
intensity values to represent three components in the composite.

Thresholding can be performed either automatically based on standard algorithms or manually
based on specific algorithms defined by the user. The automatic approach works on the principle
that there are only two components present in the image and the threshold level is defined as the
pixel value that separates these two components. Figure 2.5 shows histogram for such a compos-
ite. For this example, a typical automated thresholding algorithm will tend to select the pixel value
that produces the smallest value between the two peaks. For Figure 2.5 this threshold level value is
approximately 125. Figure 2.6 illustrates the results from applying the automatic threshold algo-
rithm to a typical image of an asphalt concrete specimen. The threshold level selected by program
to differentiate aggregates from air, asphalt binder and possibly fine aggregates, was 129.5. The
main advantage of this method is that the results are consistent and no judgment is involved in the
approach. However, this automated approach can only be applied when there are only two easily
distinguishable components present in the image. There are several instances, in which such an
automated algorithm can very easily produce misleading results.

Figure 2.5. Histogram of a Composite With Two Components.

There are two ways to mitigate the limitations associated with the automatic approach. The
first is to manually select a threshold based on the users judgment. This approach can be highly
subjective and result in inconsistent interpretation of results from image analysis depending on the
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Figure 2.6. Thresholding of a Gray scale Image to Binary Image Using Automated
Algorithm.

user. Figure 2.7 shows the results from application of manual thresholding on the same image as in
Figure 2.6 with threshold level 73 to differentiate aggregates from air, asphalt binder and possibly
fines. The second and more robust approach is to iteratively select different thresholds until the
measured area fraction (or volume fraction) of each of the two components from the image (or a
stack of images representing a three dimensional structure) matches previously known or directly
measured area fraction (or volume fraction). Section 2.2 of this report presents more details on this
approach that was also used in this research.

Figure 2.7. Manual Thresholding of a Gray scale Image to a Binary Image.
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2.3 IMAGE ANALYSIS

The previous section presented different methods to process raw digital images with the objective
of reducing noise and converting a gray scale image to a binary or trinary image that reflect the
two or three different components of interest in an asphalt mixture. The next step is to use these
images to draw out meaningful information regarding the microstructure of the components within
the mix. This section, presents a review of the various metrics and methods that can be used
to characterize the internal structure of a composite using three dimensional X-ray CT images.
Section 2.1 introduced some of these metrics that have been used for asphalt mixtures. For example
Masad et al. (1999b) quantified aggregate anisotropy using the angle of the major axis of the
aggregate to the horizontal axis of the image. The focus of this section will be to review techniques
that can be used to quantify the shape characteristics of the matrix (asphalt binder or mastic) in the
composite.

Image analysis of a composite generates a variety of measurements on the individual material
objects within the composite including volume, orientation, shape, and surface area. A continuous
quantity that varies with orientation can be used to quantify the orientation and distribution of
material objects within the composite. Examples of such quantities that have typically been used
in the literature are mean intercept length (MIL), chord length, star length, and star volume.

One of the simplest direction dependent quantities that can be used to characterize the mi-
crostructure of a two component composite is the mean intercept length (MIL) (Harrigan and
Mann, 1984). The MIL along a direction is obtained as follows: grid lines are drawn at specific
intervals along the direction on an image of the two-component composite. The intersections be-
tween the grid lines and the interface of the two-components are counted. The mean intercept
length is then defined as the total length L of the line grid divided by the number of intersections
(Figure 2.8). The MIL can be obtained along several different directions. A drawback of the MIL
is that it determines the orientation of the interface rather than the material itself and it may un-
derestimate the anisotropy of the material. An alternative and similar approach is the chord length
density distribution. The chord length distribution along a direction is obtained as follows: simi-
lar to the MIL grid lines are drawn on an image of the two-component composite and lengths of
chords between the intersections of grid lines are measured (Figure 2.8). The chord length distri-
bution (CLD) function p(z) indicates that the probability of finding a chord of length between z

and z+dz is p(z)dz (Torquoato and Lu, 1993).

Two additional direction dependent quantities are the Star Length Distribution (SLD) and Star
Volume Distribution (SVD) (Odgaard, 1997). The star length distribution is calculated by ran-
domly selecting several points in the material of interest within the composite and measuring the
length of lines emanating from these points in various directions until the lines encounter a bound-
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Figure 2.8. Schematic of MIL and CLD Measurements in a Two Component Composite.

ary. By doing so, the distribution of the material of interest is obtained. The orientations along
which the lines emanate from the points are typically predefined by selecting a homogeneous dis-
tribution of points on a unit sphere. Increasing the number of points reduces the uncertainty and is
more efficient than increasing the number of orientations. The average star length along an given
orientation is computed as:

Sw =
1
n

n

∑
i=1

Li (2.1)

where, L is the length of measured intercept through point i at orientation w and n is the number
of points. The SLD can be obtained for any single material that is of interest within a multi-
component composite. Figure 2.9 illustrates the measurement of SLD at four points in two di-
mensions (in practice the measurements are carried out in three dimensions). The star volume
distribution (SVD) is similar to SLD with the only difference that instead of instead a straight
line along a particular direction, the volume of a cone emanating from a point in a predefined
orientation is measured. The average star volume along any given orientation is computed as:

Uw =
π

3n

n

∑
i=1

L3
i (2.2)

where, L and n are as described before. The difference between SVD and SLD is that SVD tends to
amplify the differences between major and minor components, enhancing the effect of anisotropy.
For a more detailed description of these two methods, the readers are referred to Odgaard (1997).

The aforementioned parameters (MIL, CLD, SLD, and SVD) provide the distribution and mean
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Figure 2.9. Schematic of SLD Measurements at Four Points in a Two Component
Composite.

of a characteristic quantity along different orientations in a composite. A 2D or 3D rose diagram of
the mean of any one of these characteristics along different orientations provides an excellent visual
representation of the internal microstructure. However, it is also important to use this information
to quantitatively derive parameters that relate to the mechanical properties of the composite. One
such parameter, that will be used later to characterize the microstructure of the asphalt mastic, is
the fabric tensor based on the moment of inertia. Consider that the star lengths are measured at n

points along w orientations to produce a data set of N vectors represented by ai, where i = 1 to N.

ai =

 axi

ayi

azi

 (2.3)

Watson (1966) proposed that the orientation matrix or fabric tensor for this data set is mathemati-
cally obtained as follows.

T =
N

∑
i=1

aiaT
i =
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∑
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(2.4)

The orientation matrix or fabric tensor T has three eigenvalues τ̂1 > τ̂2 > τ̂3 and corresponding
eigen vectors û1, û2, û3 (Watson, 1966; Ketcham, 2005b). For any axis represented by vector u,
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the moment of inertia I (u) is given by equation 2.5.

I (u) =
N

∑
i=i
|ai|2−uT Tu (2.5)

Finally, the eigen vectors û1 and û3 also represent the direction vectors along which the moment
of inertia is minimized and maximized, respectively. The eigen vectors can be used to derive
important parameters that reflect the properties of the composite. For example, the degree of
anisotropy can be computed as τ̂1/τ̂3 and elongation index as 1−(τ̂2/τ̂1) (Ketcham, 2005b). Based
on this review, for this research metrics based on the SLD, i.e. the fabric tensor and the degree of
anisotropy were used to compare the microstructure of different asphalt mixtures.
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CHAPTER 3. MATERIALS, DATA COLLECTION AND PROCESSING

The previous chapter presented a summary from a literature review on the importance of internal
structure of asphalt mixtures. The previous chapter also presented a review of the different meth-
ods to process images prior to analysis as well as image analysis tools and metrics that can be
used to characterize the internal structure of asphalt mixtures. This chapter presents the research
methodology adopted to achieve the objective of this project, i.e. to characterize the internal mi-
crostructure of the matrix that holds the aggregates together in an asphalt mixture, i.e. the asphalt
binder or mastic.

The preliminary research and literature review identified three milestones to perform this study
– data collection, image processing and image analysis. The data required for this study was in
the form of images representing internal structure of asphalt specimens. The data collection task
was divided into two activities, preparing asphalt specimens of desired gradation in laboratory
and scanning the above specimens and obtaining images. The following sections of this chapter
present more details on the materials and methods used to fabricate test specimens and imaging of
the specimens using the micro X-ray CT scanner. The images obtained after scanning of specimens
were processed to meet certain requirements and then analyzed with the statistical tools to describe
the microstructure of the asphalt binder mastic in the mixture. Figure 3.1 illustrates the flowchart
of activities performed to achieve the objectives of this research. Chapter 4 of this report presents
more details on the methods used for image processing and analysis followed by Chapter 5 that
presents a discussion of findings from this research study.

3.1 SELECTION OF MATERIALS AND SPECIMEN FABRICATION

The primary objective of this study was to identify metrics that can be used to quantify the shape
characteristics and variability in the microstructure of asphalt or mastic matrix in an asphalt mix-
ture. To achieve the objective of this study, a typical dense graded asphalt mixture was selected.
Three additional variations of this mixture were produced in the laboratory by changing the binder
content, coarse aggregate gradation, and fine aggregate gradation to produce a total of four differ-
ent mixtures. The four mix designs were labelled as control, high binder, coarse adjusted, and fine

adjusted. The aggregate used in all mixtures was a limestone obtained from RTI South Plant, Buda,
Texas. Limestone is well suited for X-ray CT scanning because of its relatively homogeneous min-
eral makeup compared to other aggregates. Although igneous aggregates or gravels may also be
used, these aggregates typically contain minerals with varying densities that may result in non-
uniform X-ray attenuation and artifacts in the CT images. The asphalt binder had a performance
grade of PG 64-22.
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Figure 3.2 shows the gradation and binder content for these four mixtures. The gradation limits
are based on the specification followed by the Texas Department of Transportation (TxDOT) for
Type C mixtures and all variations of the control mix were designed to be within these limits. The
control mix had 4.2% binder content by weight of aggregates, and the high binder mix had 4.7%
binder content but the same aggregate gradation as the control mix. The coarse adjusted mix had
the same binder content and fine aggregate (passing #16 sieve) gradation as the control mix but
the gradation of the coarser aggregates (retained on #16 sieve) was modified. Similarly, the fine
adjusted mix had the same binder content and coarse aggregate gradation as the control mix but
the fine aggregate gradation was modified.

It is important to emphasize that all four mixes used the same binder and aggregate and only
difference between the control and other mixes was either the binder content or the gradation. The
rationale for selecting these four mixtures was not to establish a correlation between the micro
structure of the mastic and mixture characteristics (although this is the eventual long term goal).
Rather, these four mixtures were selected to (i) evaluate the influence of these parameters on the
micro structure of asphalt mixtures, and (ii) to evaluate whether or not the metrics used to quantify
the mastic micro structure are sensitive to changes in mixture characteristics.

The maximum specimen size that can be used with the three dimensional X-ray CT scanner is
dictated by the resolution required for micro structure characterization. The objective of this study
was to characterize the internal micro structure of binder or mastic matrix in an asphalt mixture.
Accordingly, a resolution in the range of 10 micrometers per voxel was considered as appropriate
for this study. A cylindrical specimen approximately 12.5 mm in diameter was considered as ap-
propriate to achieve this resolution. Asphalt mixture specimens that were six inches in diameter
and four inches in height were compacted for each of the four different mixtures using the Su-
perpave gyratory compactor (SGC). The ends of the SGC compacted specimen were cut using a
diamond blade saw to achieve a finished specimen height of two inches. A diamond coring bit was
used to core approximately ten specimens that were 12.5 mm in diameter and 50 mm in height.
Two specimens cored from the SGC compacted specimen for each type of mixture were selected
for X-ray CT scanning. The two cored specimen were selected such that they had similar air void
content as compared to the average air void content of the SGC compacted specimen.

3.2 HIGH RESOLUTION X-RAY CT SCANNING OF IMAGES

The finished specimens were used to obtain high resolution sectional images of the test specimen
from a volume of interest. The scanning was performed at the high-resolution X-ray CT Facility
at the University of Texas at Austin (UTCT). Ketcham and Carlson (2001) provide a more detailed
description of the principles of X-ray tomography and methods used to acquire images and correct
artifacts. In summary, high-resolution X-ray CT scanning (HRXCT) is based on the principle that
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an X-ray fan beam (or cone beam) is directed at an object from all orientations in a plane, and the
decrease in X-ray intensity caused by passage through the object is measured by a linear array of
detectors (Figure 3.3). The resulting data are then reconstructed to create a cross-sectional image
of the object along that plane. The gray scales in such images reflect the relative linear X-ray
attenuation coefficient µ , which is a function of density, atomic number, and X-ray energy. For
this study, the energy source used was adjusted to 80kV and 10W to obtain the best resolutions.

Each CT image is termed a ‘slice’, as it corresponds to what one would see if the object were
sliced along the scan plane. By gathering a stack of contiguous slices, data for a complete 3D
volume can be obtained. Each slice represents a finite thickness of material, corresponding to the
thickness of the collimated X-ray beam and detector array. Consequently, the pixels in CT images
represent volume elements and are referred to as voxels Ketcham (2005a).

A total of 8 specimens, two of each mixture type, were scanned using the HRXCT. A volume,
approximately 12.5 mm x 12.5 mm x 8 mm, enclosing the middle third of each specimen was
scanned to obtain a total of 562 images each with a resolution of 1024 x 1024 pixels. The problems
of beam hardening and ring artifacts were removed during post-construction phase. Figure 3.4
shows a typical image of the specimen for the control mix.

3.3 IMAGE PROCESSING

As described before, all images acquired using the HRXCT must be processed before conducting
any kind of analysis. The following steps were carried out to process the images to a format that
would be suitable for detailed analysis of the microstructure. All steps were carried out using
Matlab.

1. Image cropping

2. Contrast enhancement

3. Image noise removal / reduction

4. Thresholding

The two dimensional slice images obtained after scanning were 1024x1024 pixels in size. The
images were cropped to a size of 512x512 pixels to obtain the region of interest and remove any
unwanted information from the edges. The pixel intensity values of the images obtained in this
manner varied from 0 to 165. In order to examine the fine details and visually distinguish between
the fine features it is important to fully utilize the entire range of intensity values, i.e. 0 to 255.
Therefore a contrast enhancement operation was performed on the cropped images.

All digital images, including the ones used in this study, contain some amount of noise. Elimi-
nating noise while preserving the details of interest in the image is one of the challenges in image
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processing. Several different types of linear and nonlinear filtering tools are available to remove
different types of noise that is typically present in digital images. Regardless of the type of fil-
ter, the output image should minimize noise without destroying the information of interest in the
image. The first step to eliminate noise is to identify the type of noise in the image. Multiplica-
tive noise is usually associated with a blur that was not seen in the images. The digital noise in
the images was most likely an additive noise. This kind of noise can be reduced by using linear
and nonlinear filters. However, linear filters are not the best choice for this study because it is
associated with blurring of images and loss of detail at the edges. Figure 2.3 illustrates this for
the neighborhood average filter, which is a linear noise filter. Therefore, several different types of
non-linear filters were applied to the images (e.g. median filter and anisotropic diffusion). Several
images were used with these filters and visually compared. Based on this comparison it was found
that the median filter was most effective in reducing noise and preserving details. As described
before, in median filtering the gray level of each pixel is replaced by the median of the gray level
of all pixel values in the pixel’s neighborhood (Russ, 2007). The neighborhood area which is also
referred as the kernel, used in this study was 3 by 3. Figure 2.4 demonstrates the use of median
filter on a sample image.

A typical mixture composite can be broken down into three components – aggregates, mastic
(binder with fines or aggregates finer than 75 microns), and air. After noise reduction the next step
was to convert the grayscale image to an image that contained only three pixel intensity values
representing the three components within the composite. A thresholding operation was performed
such that the end product had air represented by black pixels (pixel value 0), mastic represented
by gray (pixel value 150) and aggregate represented by white (pixel value 255). The objective
of the thresholding operation is to identify two pixel intensity values in the gray scale image that
differentiate between these three components. The volumetric properties (volume of air void and
volume of mastic) of each specimen were determined. An iterative process was used to determine
the two pixel intensity values that differentiated between air voids, mastic, and the aggregates for
a stack of 520 images that represent a volume of the specimen. The iterations were designed to
minimize the difference between the volume percent of air voids and mastic computed using the
stack of images to the values obtained experimentally. This procedure was based on the work of
Zelelew et al. (2008). The thresholds were defined when the computed volume of the mastic and air
voids were within a certain tolerance of the known volumes for the mixtures. Since the objective of
this study was to characterize the microstructure of the mastic between coarse aggregate particles,
a greater emphasis was placed on achieving the correct volume percentage of the mastic. Also,
the volume of the specimen that was imaged was a small portion of the specimen that was used
to obtain volumetric air content. Therefore, it is possible that the computed values for the air void
content from the stack of images may not closely match the air void content of the entire specimen.
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For this reason, a broader tolerance was used to compute the threshold for the air void content.
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Figure 3.1. Flow Chart of Steps Followed for the Research.
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Figure 3.2. Gradations for the Four Different Mixtures.
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Figure 3.3. Schematic of X-Ray CT Imaging.

(Adapted from Ketcham, 2005a)

Figure 3.4. Typical HRXRCT Slice Image of Control Mix.
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Figure 3.5. Schematic of Image Processing Steps.

27





CHAPTER 4. ANALYSIS AND RESULTS

4.1 ANALYSIS TO DETERMINE THE MICROSTRUCTURE OF THE ASPHALT MA-
TRIX

The previous chapter summarized the procedures used to fabricate specimens, collect HRXCT im-
age data and process these images to a format that would be suitable for detailed analysis. The
main objective of this study is to establish quantitative metrics to characterize the three dimen-
sional microstructure of the asphalt mastic in an asphalt mixture. Based on a literature review, the
metric of choice selected for this study was the fabric tensor obtained using the star length distri-
bution (SLD). The Quant3D program originally developed by Ketcham and co-workers was used
for analyzing images and characterizing the microstructure of the mastic (2005a). The Quant3D
program uses the processed images as an input and computes the SLD (or SVD), fabric tensor,
eigen values and eigen vectors for the component of interest. The SLD provides the average length
of the component of interest (for specified number of points) along different orientations using a
three dimensional rose diagram. For this study, it was also of interest to examine not only the av-
erage length but also the distribution of this length along each orientation. Therefore the program
was slightly modified to report the distribution of the lengths along each orientation.

Figure 4.1 illustrates the user interface for the Quant3D program. For each specimen 512 pro-
cessed slice images were uploaded. The critical inputs for this program are as follows. The thresh-
old range of values is used to describe the component of interest. For example, in the processed
images, the air voids, mastic, and aggregates are represented using a pixel intensity values of 0,
150, and 255, respectively. For example, in order to analyze the microstructure of the mastic, a
range of 145-155 can be used. The “number of directions” defines the number of orientations along
which the lengths will be measured. For this study, 512 orientations that represent a uniform dis-
tribution on a sphere were selected. A total of 1000 points were randomly selected to make these
measurements. Choosing the appropriate number of points is an important parameter to obtain
meaningful results. Selection of too many points results in very long computing time. In contrast,
selection of too few points will not provide meaningful distributions.

Figures 4.2 and 4.3 illustrate the typical three dimensional rose diagram for the SLD and SVD,
respectively. The average SLD is used to compute the fabric tensor using equation 2.4. The eigen
vector and eigen values for this fabric tensor are also computed. Recall that the eigen vectors with
the largest and smallest eigen values represent the direction vectors along which the moment of
inertia is minimized and maximized representing the preferred direction of the matrix. In addition,
the ratio of the maximum to the minimum eigen values is a measure of the degree of anisotropy.
Table 4.1 lists the fabric tensor, eigenvalues, and eigen vectors based on a typical SLD analysis.
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Figure 4.1. Interface for the Quant3D Program.

In summary, the analysis based on SLD provides the following information:

• average three dimensional geometry of the asphalt matrix (in this case the mastic),

• orientation of this geometry with respect to the direction of compaction of the mixture, and

• the degree of anisotropy in the matrix between particles.

Although the above analysis provides the average three dimensional geometry of the matrix be-
tween aggregate particles, it does not provide information about the variability in the geometry.
The following section describes the methods used to characterize the variability in the microstruc-
ture of the asphalt matrix.
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Figure 4.2. Typical Three Dimensional Rose Diagram for SLD from Quant3D.

4.2 VARIABILITY IN THE MICROSTRUCTURE OF THE MATRIX

The Quant3D program was modified to provide star lends at each one of the 1000 points along the
512 directions used in this study. The next was to determine the distribution of the star length along
a given direction. A frequency histogram of the star lengths along each direction was plotted. It
was found that the Weibull distribution was a reasonably good representation of the distribution of
star lengths along each one of the directions. The Weibull distribution has two parameters, shape
and scale, that can be varied to fit a wide variety of observed data. The Matlab program was used
to obtain the parameters for the Weibull distribution using the 1000 points along each one of the
512 directions. Figure 4.4 illustrates the typical distribution of the star length and the Weibull
distribution that was fit using Matlab. The shape and scale parameters for the Weibull distribution
were then used to compute the standard deviation and coefficient of variation of the star length
along each direction.

The coefficient of variation along different directions were used to plot a three dimensional rose
diagram to assess whether or not any particular direction was more susceptible to variability than
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Figure 4.3. Typical Three Dimensional Rose Diagram for SVD from Quant3D.

others (Figure 4.5). This is similar to the rose diagram for the star length distribution, with the
difference that the coefficient of variation was used to plot the three dimensional rose diagram. In
addition, an average coefficient of variation was also computed for all the 512 directions to be used
as a metric to compare the variability of the microstructure between different mixture types.

4.3 RESULTS

The X-ray CT images of two specimens for each of the four mixtures illustrated in Figure 3.2 were
processed and analyzed obtain the information described in the aforementioned sections. The
microstructure of the matrix for these four mixtures were compared based on the following four
metrics:

• Degree of anisotropy: This is defined as the ratio of the maximum to the minimum eigen
values.

• Average star length along the preferred direction: The preferred direction is the principal
direction that has the highest eigen value. It is also the direction along which the moment of
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Table 4.1. Typical Results From Quant3D for SLD Analysis.

Parameter Value

Fabric Tensor Based on SLD

 0.351 0.006 −0.0008
0.006 0.344 −0.0006
−0.0008 −0.0006 0.3042


[

0.8635 0.5040 −0.0191
]

Eigen vectors
[

0.5042 −0.8636 0.0036
]

[
−0.0147 −0.0128 −0.9998

]
0.3551

Eigenvalues 0.3407
0.3042

Degree of Anisotropy 1.1672

inertia of the geometry is minimized.

• Average variation in the star lengths along all directions: The analysis was conducted by
measuring the star lengths along 513 orientations at 1000 points. The average of the 1000
star lengths along each direction is used to obtain the average three dimensional shape of
the matrix. Similarly, the coefficient of variation along each of these 513 directions can be
computed for the 1000 points. Since the coefficient of variation along different directions did
not vary significantly, the average of the standard deviations and average of the coefficient
of variation along the 513 directions were computed and compared for different mixes.

• Orientation or preferred direction of the mastic: This refers to the orientation of the eigen
vector with the highest eigen value or lowest moment of inertia. This is also the orientation
along which the maximum value of the star length is aligned. The orientation or plunge is
the angle made by the vector that defines the preferred direction to the plane perpendicular
to the direction of compaction (Figures 4.6 and 4.7).

The results based on the above metrics are summarized in Table 4.2.
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Figure 4.4. Typical Distribution of the Star Length Along a Given Direction.

Figure 4.5. Three Dimensional Rose Diagram for the Coefficient of Variation of Star
Lengths.
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Figure 4.6. Typical Rose Diagram for the SLD with Respect to Axis of Compaction.

Figure 4.7. Side View Showing Orientation of the Preferred Direction.
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Table 4.2. Summary of Results Based on Star Length Analysis of the Matrix.

Mix Type
Degree of
anisotropy

Average
star length
in preferred

direction

Average of
standard
deviation

in star
lengths

Average of
coefficient
of variation

in star
lengths

Orientation
of the

preferred
direction
(degrees)

Control Mix 1.28 0.37 0.31 103% 7.6
High Binder 1.25 0.18 0.12 84% 2.8

Fine Adjusted 1.15 0.17 0.13 83% 5.7
Coarse Adjusted 1.30 0.34 0.28 104% 45.4
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CHAPTER 5. CONCLUSIONS

The following are some of the conclusions that can be drawn based on the results presented in
Table 4.2.

1. The asphalt binder matrix has some degree of anisotropy in all mixtures. The control and the
coarse adjusted mixtures had similar and the highest level of anisotropy. This is expected,
because the analysis was based on the microstructure of the asphalt matrix which is not ex-
pected to change significantly upon changing the only the coarse aggregate gradation of the
mixture. Increasing the binder content, reduced the anisotropy to some extent but not signifi-
cantly. Changing the gradation within the fine aggregate fraction of the mixture significantly
reduced the level of anisotropy (fine adjusted mix).

2. The average star length of the asphalt mastic in the fine aggregate matrix along the preferred
orientation was similar for the control and the coarse adjusted mix. This was also expected,
since changes in the coarse aggregate gradation should not have a significant impact on
the internal microstructure of the fine aggregate matrix. The average star length reduced
significantly due to the addition of asphalt binder (high binder mix). All other variables
remaining constant, contrary to the findings, one would expect that the addition of asphalt
binder should increase the average star length as compared to the control mixture. This
apparent contradiction can be explained as follows. The fine aggregate particles in mixtures
with higher binder content are more likely to be homogeneously distributed resulting in
a more dispersed mastic-fine aggregate matrix with relatively smaller average size of the
asphalt mastic. This explanation is further supported by the reduced standard deviation and
coefficient of variability in the star lengths for the mixtures with higher binder content. A
more uniformly dispersed mastic within the matrix can have a significant influence on the
mixture properties and performance. For example, a matrix where the asphalt mastic has
smaller average dimensions and is more uniformly dispersed can be more effective in crack
pinning and hence resisting crack growth. A change in the fine aggregate gradation also had
a similar impact as the increase in binder content.

3. In most cases, the preferred direction of the asphalt mastic or direction with the largest star
length was perpendicular to the direction of compaction. This indicates that the fine aggre-
gate matrix experiences compaction induced anisotropy in addition to inherent anisotropy
that may be due to the shape characteristics of the fine aggregate. For the mixture with the
different coarse aggregate gradation (coarse adjusted mix), this orientation was almost 45
degrees to the direction of compaction and significantly different from other mixtures. This
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indicates that the coarse aggregate gradation may have an significant influence in dictating
the direction of anisotropy.

4. Although all test specimens had gradations within the specification limits, they had widely
different internal microstructure. The differences in the internal microstructure are expected
to yield very different mechanical and damage characteristics. While the findings reported in
this study are based on the use of a limited number of mixtures, the results indicate the impor-
tance of understanding the relationship between aggregate gradation, internal microstructure,
and performance.
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